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a b s t r a c t

Nowadays, simulations have become indispensable for the analysis and optimisation of (bio)chemical
processes. However, as a lot of these processes are distributed in nature (i.e., the properties vary both
in time and space), their simulation requires the solution of non-linear convection–reaction–diffusion
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eywords:
umerical methods
artial differential equations
ethod of lines

partial differential equations (PDEs). Therefore, this paper compares different solution methods in a
comprehensible way in order to provide practical guidelines. Moreover, to stimulate their usage in prac-
tice, all techniques have been implemented in Matlab®, and all test examples have been made available
(www.matmol.org). This allows practitioners to rapidly evaluate different methods when setting-up their
own process simulation code. Finally, a complex reverse flow reactor case illustrates how these methods

ined
perator splitting
everse flow reactor

can be successfully comb

. Introduction

As convection–reaction–diffusion processes are omnipresent in
he (bio)chemical industry, accurate and efficient simulation tech-
iques are valuable tools for process engineers (see, e.g. [1–3] for
ecent results). In particular, the combination with optimisation
outines is attractive from an economic point of view. In litera-
ure, a vast amount of methods have been presented over the years
o solve the partial differential equations (PDEs) involved, but no
ingle method has been found to be best for all cases. Therefore,
he major objective of this paper is to compare several easily com-
rehensible but versatile solution techniques, and to add practical
uidelines.

The simulation techniques under study can be classified in two
ategories: operator splitting (OS) [4] and method of lines (MOL)
5] approaches. The former category tackles the different phenom-
na sequentially within each time step, adapting the integration
ethod each time to the phenomenon at hand, whereas the lat-

er category of methods simultaneously accounts for all present
henomena (conversion, reaction and diffusion) when solving the

DEs. The MOL approach is based on two steps: the spatial deriva-
ives are first approximated, e.g., by finite differences or finite
olumes, and then the system of semi-discrete equations is inte-
rated in time. The success of this approach is due to the availability

∗ Corresponding author. Tel.: +32 65 37 41 41; fax: +32 65 37 41 36.
E-mail address: alain.vandewouwer@fpms.ac.be (A. Vande Wouwer).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.08.017
with optimisation approaches.
© 2009 Elsevier B.V. All rights reserved.

of efficient time integrators for solving the resulting mixed sys-
tems of (ordinary) differential and algebraic equations (DAEs), e.g.,
the Matlab® ODE suite [6]. As a simple and easily implementable
example of an OS method, the sequencing method [7] is selected
and adapted. For the MOL approaches, the MatMOL toolbox [8]
is employed. This toolbox contains different simple (uniform and
non-uniform) discretisation schemes, and recently more advanced
features, i.e., flux limiters and adaptive grids [9–13], have been
added. To compare the different techniques three test cases are
studied: a jacketed tubular reactor, a fixed bed bioreactor, and the
exploitation of an oil well. In these examples the diffusion can easily
be varied from high to low, allowing also to evaluate the perfor-
mance of the techniques in the presence of, e.g., (steep) moving
fronts. Finally, to illustrate the successful combination of simu-
lation and optimisation techniques for an industrial setting, the
performance of a reverse flow reactor is optimised.

To promote the practical usage, all techniques have been coded
in the widely spread and user-friendly software package Matlab®

(The MathWorks Inc., Natick), and all codes have been made avail-
able on the internet. Since every test example has been coded as
a Matlab® m-function, changing the function arguments allows to
rapidly experiment with different options. Moreover, these exam-
ple files can be used by practitioners as templates to compare

different methods when developing their own process simulation
codes.

The organisation of the paper is as follows. In Section 2 the math-
ematical formulation of convection–reaction–diffusion processes
is introduced. In Section 3 different numerical approaches are dis-

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
http://www.matmol.org
mailto:alain.vandewouwer@fpms.ac.be
dx.doi.org/10.1016/j.cej.2009.08.017
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ussed, while Section 4 compares their performance for the test
ases and provides practical guidelines. Section 5 illustrates the
uccessful optimisation of a more complex reverse flow reactor.
inally, the main conclusions are summarised in Section 6.

. Mathematical formulation

Describing convection–reaction–diffusion processes by
ne-dimensional balance equations1 often results in a set of

coupled partial differential equations with as independent
ariables time t and spatial coordinate z, and as dependent variable
:

∂x

∂t
= ∂fd

∂z
− ∂fc

∂z
− r(x) (1)

ere, the left hand side represents the accumulation of x over time
n an (arbitrarily) small element, while the terms in the right hand
ide account for the difference between incoming and outgoing
iffusive and convective fluxes (fd and fc , respectively), and the dis-
ppearance of x due to reaction, respectively. These fluxes often
ake the form fd = D(∂x/∂z) and fc = vx, and when the diffusion
oefficient D and the velocity v are constants, they can be taken
utside the derivatives.

Mathematically, such PDEs are classified as parabolic PDEs.
henever the diffusion is absent, the nature and the features of

he PDEs change and they are called hyperbolic PDEs. Initial condi-
ions (IC) and boundary conditions (BC) are required to complete
he mathematical formulation. Initial conditions define the state of
he system at the initial time:

(z, t = 0) = x0(z) (2)

hereas the boundary conditions:(
x(z = zL or zR, t),

∂x

∂z
(z = zL or zR, t), t

)
= 0 (3)

elate to the transport to and from the system at the left and right
oundary, i.e., zL and zR, respectively.

. Solution methods and strategy

First of all, it should be emphasised that there exists no sin-
le best method for all convection–reaction–diffusion problems.
ence, when setting up a simulation code the developer will often
ave to test several techniques. Nevertheless, an in practice often
cceptable strategy is, trying a MOL approach with simple linear
nite differences or finite volumes schemes on fixed grids first.
hen the results are not satisfactory, (i) more elaborate non-linear
OL schemes, e.g., finite volumes with non-linear flux limiting

unctions or adaptive gridding, can be tried, or, (ii) alternatively, the
ossibilities of OS approaches can be explored. This section briefly
ecalls the most important features of the considered MOL and OS
pproaches. It should be noted that in the following subsections
constant diffusion D and velocity v are assumed for reasons of

larity. However, remarks for non-constant cases are added.

.1. Method of lines

The rationale behind the MOL involves two successive steps:
patial discretisation of the PDEs and time integration of the resulting

ystem. Whereas the discretisation of time-dependent PDEs leads
o an ODE system, the discretisation of (usually static) boundary
onditions results in algebraic equations (AEs), altogether forming
system of differential-algebraic equations (DAEs). This system of

1 Although 2D or 3D equations are equally possible, they result in higher compu-
ation times, while the increase in accuracy is not always significant.
Journal 155 (2009) 603–616

DAEs with discretised vectors x, xz and xzz for the variable x and its
first- and second-order derivative at n discretisation points z of a
vertex-centred grid can be written as follows:

dx
dt

= Dxzz − vxz − r(x) (4)

g(x, xz, t) = 0 (5)

x(z, t = 0) = x0 (6)

3.1.1. Finite differences on fixed grids
As the discretisation points are now positioned at the inter-

val boundaries, the interval length for a uniform grid is given by
�z = L/(n − 1). Applying a first- and second-order approximation
on a uniform grid to the first- and second-order spatial derivatives,
respectively:

∂x

∂z

∣∣∣∣
zi

= x(zi−1) − x(zi)
�z

+ O(�z) (7)

∂2x

∂z2

∣∣∣∣
zi

= x(zi−1) − 2x(zi) + x(zi+1)
�z2

+ O(�z2) (8)

results in a classic tanks-in-series model. Higher-order
schemes can be derived based on Taylor series expan-
sions. For instance, a fourth-order biased upwind and a
fourth-order centred approximation for the first- and second-
order spatial derivative, respectively, are given in the following
expressions:

∂x

∂z

∣∣∣∣
zi

= −x(zi−3) + 6x(zi−2) − 18x(zi−1) + 10x(zi) + 3x(zi+1)
�z

+O(�z4) (9)

∂2x

∂z2

∣∣∣∣
zi

= −2x(zi−2) + 32x(zi−1) − 60x(zi) + 32x(zi+1) − 2x(zi+2)
4!�z2

+O(�z4) (10)

The use of discretisation stencils is not restricted to uniform grids as
the weighting coefficients can be computed for non-uniform grids
based on an algorithm by Fornberg [14]. Combining the stencils
at all discretisation points into differentiation matrices D1 and D2
enables a simple matrix-vector based computation of the deriva-
tives: xz = D1x and xzz = D2x. In addition, these matrices can also
be used to approximate the flux derivatives in case of non-constant
velocity and diffusion values, i.e., fc,z = D1fc and fd,z = D1fd with
fd = DD1x.

Although these linear differentiation matrices are extremely
useful from a computation point of view, non-linear techniques
may be required whenever the amount of diffusion is limited and
sharp spatial transitions are involved. Classic linear techniques
are known to produce either excessive smoothing of the pro-
files due to numerical diffusion (first-order schemes) or excessive
non-physical oscillations due to numerical dispersion (high-order
schemes). Observe that both numerical diffusion and dispersion are
computational artefacts and, by consequence, may not be confused
with their physical equivalents. Increasing the grid density, not
only decreases these undesired effects, but also increases the com-

putational burden. Hence, either an acceptable trade-off between
computation time and accuracy has to be found or alternative
(non-linear) methods have to be selected. Both flux limiters and
adaptive grids have been proposed as non-linear methods to miti-
gate the undesired effects.
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Table 1
Flux limiting functions.

Flux limiter Expression

Koren max
(

0, min
(

2r, 1+2r
3 , 2

))
Mc max

(
0, min

(
2r, 1+r

2 , 2
))

Minmod max(0, min(1, r))

Smart max
(

0, min
(

2r, 1+3r , 4
))

3

i
I
n
o
o
s
T
n
o
r
a
t
p
w
m
a
s

3

a
g
i
a
t
e
m
s
v
u
t
i
t
t
c
e
b
t
b

3

t
O
c
s
a
e
o
l
i

4

Superbee max(0, min(2r, 1), min(r, 2))

Van Leer r+|r|
1+|r|

.1.2. Finite volumes with flux limiters
Flux or slope limiters for finite volume schemes have been

ntroduced for approximating the derivative of the convective flux.
n smooth parts high-order schemes fc,ho are adopted, whereas
ear sharp transitions first-order schemes fc,lo are preferred in
rder to avoid oscillations. Both approximations are combined into
ne formula using the limiting function �(x) which measures the
moothness of a solution: fc(x) = fc,lo(x) + �(x)[fc,ho(x) − fc,lo(x)].
he limiter is close to 1 in smooth regions and close to 0 in
on-smooth regions. A popular limiter �(ri) is based on the ratio
f consecutive gradients: ri = (x(zi) − x(zi−1))/(x(zi+1) − x(zi)). If the
atio r is near 1 a smooth solution can be expected, whereas higher
nd lower values indicate the presence of sharp spatial transi-
ions. In literature (e.g., [15]) several limiting functions have been
roposed as well as total variation diminishing (or TVD) criteria,
hich ensure that a flux limiter causes the oscillations to decrease
onotonously as time evolves. Examples of flux limiting functions

re presented in Table 1. All (except the Smart limiter) satisfy the
econd-order TVD-criteria [15].

.1.3. Adaptive grids
As the undesired effects decrease with increasing grid density,

nother option is to use non-uniform grids and concentrate the
rid points in regions with sharp spatial transitions. This approach
s much more efficient than using a dense uniform grid as no points
re wasted in smooth regions. However, the grid has to be adapted
o track the region of high spatial activity in time. The points are
ach time equally distributed (i) according to a monitor function
(x) (which is often based on the arc length or curvature of the

olution), and (ii) subject to regularity constraints (in order to pro-
ide upper and lower bounds on the interval length). The grid
pdate procedure can either be performed periodically, when the
ime integrator is halted (static regridding) or can be incorporated
nside the time integrator itself (dynamic regridding). The former
echnique is easier to implement due to the uncoupled integra-
ion and regridding steps, yields smaller integration problems and
an easily accommodate new fronts. The latter technique has, how-
ver, always an optimal grid distribution (and, hence, cannot lag
ehind), has no computational overhead due to frequent integra-
or restarts and does not suffer from interpolation errors induced
y uncoupling the integration and regridding steps [13].

.1.4. Time integration
The second step in the MOL approach concerns the time integra-

ion of the semi-discrete system of DAEs. DAE (and linear implicit
DE) systems can be represented as M(x, t)(dx/dt) = f(x, t) with
onsistent initial conditions x(0) = x0 and a mass matrix M, which is
ingular in the DAE case. Non-stiff ODE systems (i.e., when all vari-

bles vary at comparable time scales) are most efficiently solved by
xplicit integrators, which compute values at the next time point
nly based on the current values. However, stiff ODEs (i.e., with
argely varying time scales) and DAEs have to be treated by implicit
ntegration routines. These implicit integrators have to solve a set of
Journal 155 (2009) 603–616 605

(non-)linear equations (requiring the Jacobian J of the system equa-
tions with Ji,j = ∂fi/∂xj) in order to find the values at the next point
in time. These Jacobians can be either provided analytically to the
solvers, or, they can be approximated by the solver itself via finite
difference perturbations. Alternatively, when these Jacobians are
large and sparse (which is the case for the DAEs resulting from the
discretisation of PDEs), the sparsity pattern of the Jacobian can be
provided to the routine in order to significantly reduce the number
of finite difference perturbations for the Jacobian approximation.

However, as explicit integration methods are faster because no
Jacobian evaluations are required, a first important practical aspect
is to check reformulation strategies, which convert the original
DAE system to an ODE system, enabling the use of a simpler (and
possibly faster) explicit integrator.

• A first approach [8] is converting the (discretised) algebraic
boundary conditions g(x, xz, t) = 0 into ODEs with a small time
constant �f , which quickly forces the deviation from the bound-
ary condition towards zero: dx(z1 or zn)/dt = (1/�f )g(x, xz, t).
However, care should be taken for (i) a correct right hand side
sign ensuring a decay and not a growth of the deviation, and
(ii) an appropriate tuning of the time constant �f for each of the
boundary conditions in order to achieve a fast response (and fast
satisfaction) of the boundary condition, without leading to a set
of stiff ODEs.

• A second approach [16] involves the explicit elimination of the
algebraic equations from the DAE system by (i) expressing all
boundary variables x(z1) and/or x(zn) as a function of the other
variables using the (discretised) boundary conditions g(x, xz, t) =
0 and (ii) substituting the obtained relations into the (discretised)
differential equations.

Another important aspect for the time integration is time bal-
ancing, i.e., balancing the discretisation in space and time, because
it is useless from an approximation point of view to have a fine time
discretisation with a coarse spatial grid or vice versa.

3.1.5. Implementation in Matlab®: the MatMOL toolbox
The MatMOL toolbox contains a variety of discretisation stencils

on uniform and non-uniform grids which have to be combined with
Matlab®’s ODE suite [6,17]. These templates can be used in com-
bination with the DAE solver ode15s (implicit integrator) or with
the ODE solvers as ode45, ode23 (explicit integrators), or ode23s
(implicit integrator) when eliminating the algebraic equations orig-
inating from the boundary conditions or converting them into an
ODE with a forcing function. With respect to time balancing, the
integrators do not allow a direct control on the time step length.
The only parameters influencing this property are the relative and
absolute integration error tolerances RelTol and AbsTol. Since the
default values of 10−6 are in general too low, it is recommended that
a user, when coding his or her own application, tries several lower
values in order to check whether tighter tolerances really improve
the accuracy of the solution or only result in higher computation
times.

In addition, more advanced features have been recently added to
the MatMOL toolbox: (i) several flux limiter functions (e.g., Koren,
MC, Minmod, Smart, Superbee, and Van Leer), (ii) the static regrid-
ding method agereg [12], and (iii) the dynamic regridding code
based on the movgrd code [18,19]. In general, the DAE nature
is indicated by adding the option Mass. Analytical Jacobians or
their sparsity pattern can be supplied via the options Jacobian

and JPattern, respectively. All these matrices have to be pro-
vided as additional (nested) m-functions, and for computational
efficiency, they are best stored as sparse. The flux limiters are
easily incorporated as they only replace the first-order derivatives
of vxz. Although providing the Jacobian analytically is no more
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easible in this case, it is still advantageous to provide its spar-
ity pattern. In the static regridding code the implicit integrator
de23s is employed. In contrast to multi-step integrators, this one-
tep integrator only needs the current values of the system (and
o additional earlier values) which is advantageous with respect
o the repeated solver restarts and the corresponding computa-
ional overhead. To stop the integration each nmax integration steps,
n event function is specified which halts the integrator when it
eaches zero. At each stop the grid is adapted based on one of the

onitor functions m(x) =
√

˛ +
∑n

i=1xz
2
i

or m(x) = √
˛ + max xzz,

nd the dependent variables are interpolated on the new grid. In
he dynamic regridding code, linearly coupled ODEs which deter-

ine the grid movement, are added to the original DAEs, resulting
n a banded mass matrix M, which now also depends on the states.
o facilitate the computation, the MStateDependence option has
o switched to strong due to the high dependence of this mass

atrix on the states. With respect to the monitoring function, sev-
ral possibilities are available.

.2. Operator splitting methods

The rationale behind operator splitting, or also called time split-
ing methods, is to split the original convection–reaction–diffusion
DEs into different parts which are solved sequentially within each
ime step, in order to take advantage of solution methods that are
ighly adapted to each of the different parts [4,20]. In general, split-
ing algorithms can be classified into two and three step procedures
ased on the number of parts.

Traditional two step schemes involve the isolation of the reaction
art, yielding a linear convection–diffusion PDE, and a system of
on-linear ODEs:

∂x

∂t
= D

∂2x

∂z2
− v

∂x

∂z
and

dx

dt
= −r(x) (11)

ypically, the linear convection–diffusion equation is solved using
standard finite differences approach, while the reaction part

s solved with an appropriate ODE integrator. However, for
onvection dominated problems, this scheme can be quite com-
utationally expensive due the fine grid required for solving
he convection–diffusion PDE. Alternatively, a non-traditional two
tep scheme, which isolates the diffusion term from the equa-
ion, leading to a linear diffusion equation, and a non-linear
onvection–reaction equation, has recently been reported [20]:

∂x

∂t
= D

∂2x

∂z2
and

∂x

∂t
= −v

∂x

∂z
− r(x) (12)

lthough the diffusion PDE can now easily be solved using finite
ifferences and an implicit integrator, flux limiters will be required
or the solution of the non-linear hyperbolic convection–reaction
DE.

Three step splitting algorithms separate all phenomena, i.e., dif-
usion, convection and reaction, yielding two linear PDEs, and a
on-linear system of ODEs:

∂x

∂t
= D

∂2x

∂z2
;

∂x

∂t
= −v

∂x

∂z
and

dx

dt
= −r(x) (13)

ach of these steps can now be solved by a technique appropriate
o the nature of each phenomenon. The splitting of (non-
omogeneous) boundary conditions is not always straightforward,

nd is often still based on trial-and-error as a general procedure
nd analysis is still lacking [4].

An additional, important question concerns whether or not the
olution sequence of the different parts has an influence on the
nal solution. In the work of [4] and [21] necessary conditions for
ommutativity are given.
Journal 155 (2009) 603–616

1. Convection commutes with diffusion, if the velocity v and the
diffusion coefficient D do not explicitly depend on the spatial
coordinate z.

2. Convection commutes with reaction, if the velocity v and the
reaction r(x) do not explicitly depend on the spatial coordinate
z.

3. Diffusion commutes with reaction, if the reaction r(x) is linear in
x, and independent of the spatial coordinate z.

In general, the first two necessary conditions are satisfied. The
third condition is, however, often not fulfilled, which may lead to
different solutions for different sequences [7]. However, the exact
sequence can be found by comparison with a low-order finite dif-
ferences method.

3.2.1. Sequencing method
The sequencing method, developed by Renou et al. [7], is a three

step splitting procedure. Within each time interval t ∈ [t∗, t∗ + �t]
the convection, the reaction, and the diffusion part are solved
sequentially. Each independent variable x is uniformly spatially
discretised on n intervals with a length of �z = L/n, resulting in
a cell-centred discretised profile x (i.e., which contains the values
discretised in the middle of each of the intervals).

The order of the different phenomena is the following: con-
vection, reaction, and diffusion. Hence, first the convection PDE
is solved for a time step �t with as initial condition the original
profile, yielding a profile x∗. This profile x∗ is then used as initial
condition for solving the reaction ODE over the interval �t, result-
ing in a profile x∗∗. This result x∗∗ is again used as an initial condition,
but now for the diffusion PDE. This provides the final solution x∗∗∗

for the current time interval. This solution is set equal to the start-
ing profile x(t + �t) = x∗∗∗ for the time interval [t∗ + �t, t∗ + 2�t],
where it will undergo again the convection, reaction and diffusion
steps. (See also [7] for an outline of the algorithm.)

Numerically, convection over a time �t is implemented as a
pure delay, i.e., shifting the profile x(t = t∗) over a distance �z =
v�t, in the direction of the flow to yield x∗. Note the explicit relation
between the time and the spatial discretisation, and the require-
ment of a constant velocity v.

Second, the reaction part for an interval �t has to be solved
starting from the shifted profile: dx/dt = −r(x, t) with x(t = t∗) =
x∗ resulting in x∗∗. If possible, an explicit analytical solution can be
used, e.g., for a linear reaction term, otherwise the system of ODEs
has to be integrated explicitly in time over an interval �t. This can
be done by simple forward Euler integration or by the use of more
sophisticated ODE solvers.

Finally, the (discretised) diffusion problem is tackled using the
results from the reaction part. Since the resulting ODE system is
linear:

dx
dt

= Dxzz = DD2x with x(t = t∗) = x∗∗ (14)

it can be solved for a given �t using a transition matrix formulation:

x(t∗ + �t) = x∗∗∗ = exp(DD2�t)x∗∗ (15)

where D2 is a differentiation matrix for the second-order deriva-
tive. This matrix can be formulated using the finite differences
methods of Section 3.1.1. Because the diffusion coefficient D, the
second-order differentiation matrix D2, and the time step �t are
constant, the exponential matrix is always the same, and can be
computed in advance. Hence, the solution of the diffusion system at

each time step only requires a single matrix vector multiplication.

3.2.2. Adaptations to the sequencing method
The original algorithm can be adapted in several ways.

The second-order differentiation matrix can be replaced by
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Table 2
Parameter values.

DFR FBBR

Parameter Value Parameter Values

L 1.0 m L 1.0 m
tsim 20 s tsim 2 h
v 0.1 m/s v 1.0 m/h
Cin 0.02 mol/L Sin 20.0 g/L
Tin 340.0 K k 2.0 g/g
E 11250.0 cal/mol kd 0.01 1/h
R 1.986 cal/mol K �0 0.4 1/h
k0 1.0 × 106 1/s KS 1.0 g/L

4h
�Cpd

0.2 1/s Ki 1.0 g/L

�H
�Cp

0.25 × Tin/Cin

the importance of convective to dispersive transport.) The other
parameter values originate from [22,24–26] and are summarised
in Table 2.
F. Logist et al. / Chemical Engin

igher-order schemes, e.g., the fourth-order scheme. Additionally,
o take advantage of linearity, the reaction part can be linearised
round the current values. The obtained linearised system can be
olved with a transition matrix formulation alleviating the need
or solving the system of ODEs. Also different sequences in which
he different phenomena are solved within one time step can be
ried.

.2.3. Implementation of the sequencing method in Matlab®

The implementation in the sequencing method in Matlab® is
traightforward as mainly vector and matrix operations (e.g., mul-
iplications, rearranging and matrix exponentials) are involved. At
he beginning, a fixed-size solution matrix (with Np spatial points
nd Nt time points) is specified. This matrix is then gradually
dapted in a for-loop over all time intervals. Within each time
nterval the different subproblems are each time solved in the same
rder. The final solution of each time interval, i.e., after all phenom-
na have applied sequentially, is then stored in the solution matrix.
n outline of the algorithm for the sequencing method can be found

n Renou et al. [7].
The default sequence is convection–reaction–diffusion. How-

ver, since only reaction and diffusion may not commute
or constant velocity and diffusion values, the alternative
onvection–diffusion-reaction sequence can also be tried. The solu-
ion of the convection subproblem is implemented as a pure shift
f the current profile in the direction of the flow, i.e., all ele-
ents are shifted one position, e.g., from position i to i + 1, while

he open position i = 1 is occupied by the value of the input
tream fed to the process. Note however, that this action requires
he satisfaction of the relation �z = v�t. To solve the reaction
ubproblem, a simple explicit forward Euler scheme can be imple-
ented, or more advanced integrators from Matlab®’s ODE suite

an be exploited. Again explicit integration schemes, e.g., forward
uler, ode23, ode45, and ode113 will be faster for non-stiff sys-
ems, while for stiff systems (e.g., in the case of slow and fast
eactions) the computation time for implicit integrators will be
ower. Alternatively, instead of using the ODE suite to solve the
eaction part, the states at the next time point can be approxi-
ated by using a matrix exponential formulation of the linearised

eaction equations. The solution of the diffusion subproblem is
btained by multiplying the current profile with the constant
xponential matrix exp(DD2�t), which has been precomputed
efore the loop starts using the built-in Matlab® function exp.
he default differentiation matrix D2 is based on a second-order
pproximation, but a modified fourth-order approximation is also
vailable.

. Test cases and results

In the current section different methods are tested and com-
ared for three (bio)chemical case studies: (i) a jacketed tubular
eactor, (ii) a fixed bed bioreactor and (iii) an oil well exploita-
ion example. In the next section, a real-life industrial case will
e studied. In the first two examples, the convective and diffusive
uxes exhibit constant velocity and diffusion parameters, while in
he third case these variables depend non-linearly on the depen-
ent variables. Although apparently simple, these examples have
een selected as the nature and difficulty of the PDEs can be flex-

bly adapted by changing the diffusion level, i.e., from easy when
iffusion dominates (parabolic PDEs), to hard when convection is

ost prominent (hyperbolic PDEs). In the latter case, hard to cap-

ure steep moving fronts can be present, while these fronts are in
eneral smoothed in the former case by the (high level of the) diffu-
ion. Implementation details about the methods that will be tested
re given in Section 4.2.
Tw,min 280.0 K
Tw,max 400.0 K
zsw 0.54 m

4.1. Model equations

4.1.1. Jacketed tubular reactor
The jacketed tubular reactor under study is a classic dispersive

flow reactor (DFR) of length L [m] in which an irreversible, exother-
mic, first-order reaction takes place. The jacket consists of a heating
and cooling part [22]:

∂T

∂t
= D1

∂2T

∂z2
− v

∂T

∂z
− �H

�Cp
k0Ce−E/RT + 4h

�Cpd
(Tw − T) (16)

∂C

∂t
= D2

∂2C

∂z2
− v

∂C

∂z
− k0Ce−E/RT (17)

subject to four Danckwerts boundary conditions [23]:

D1
∂T(0, t)

∂z
= v(T(0, t) − Tin);

∂T(L, t)
∂z

= 0

D2
∂C(0, t)

∂z
= v(C(0, t) − Cin);

∂C(L, t)
∂z

= 0

and two initial conditions reflecting the empty state at start-up:

T(z, 0) = T0(z) = Tin = 340 K
C(z, 0) = C0(z) = 0 mol/L

Here, C [mol/L] and T [K] indicate the reactant concentration and
the temperature, D1 [m2/s] and D2 [m2/s] are the energy and mass
dispersion2 coefficients, v [m/s] the fluid velocity, −�H [J/kmol] the
heat of reaction (�H < 0 for an exothermic reaction) and � [kg/m3],
Cp [J/kgK], k0 [1/s], E [J/mol], R [J/mol K], h [W/m2K] and d [m] the
fluid density, the specific heat, the kinetic constant, the activation
energy, the ideal gas constant, the heat transfer coefficient and the
reactor diameter, respectively. The jacket fluid temperature Tw [K]
switches at the switching position zsw [m] from its maximum value
Tw,max [K] to its minimum Tw,min [K]. The simulated time tsim is 20 s.
The mass and heat dispersion coefficients D1 and D2 are assumed to
be equal and take the value (D = 10−1, 10−3 and 10−5 m2/s). (Alter-
natively, also the Peclet number Pe = vL/D can be used to indicate
2 In the numerical literature the second-order terms are generally called diffusion
terms whereas in chemical engineering these terms are often known as dispersion
terms. However, in the remainder of the text, the numerical term diffusion will be
mostly employed to indicate these second-order contributions.
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ig. 1. Jacketed tubular reactor: reference evolutions for temperature (left) and conc
nd 10−5 m2/s (bottom).

.1.2. Fixed bed bioreactor
As a biochemical application, the fixed bed bioreactor (FBBR)

27], which may represent an anaerobic digester for waste water
reatment, has been selected. In this case the biomass X [g/L] which
as been fixed on a bed inside a tubular reactor of length L [m],
rows on a limiting substrate S [g/L] that is fed at the reactor inlet:

∂S

∂t
= D

∂2S

∂z2
− v

∂S

∂z
− k�(S, X)X (18)

∂X

∂t
= −kdX + �(S, X), X (19)

here the specific growth rate � [1/h] involves both substrate and
iomass inhibition:

(S, X) = �0
S

KSX + S + (1/Ki)S2
he boundary and initial conditions are

∂S(0, t)
∂z

= v(S(0, t) − Sin);
∂S(L, t)

∂z
= 0
ion (right) for different diffusion values, i.e., D = 10−1 m2/s (top), 10−3 m2/s (middle),

and

S(z, 0) = S0(z) = Sin = 20 g/L
X(z, 0) = X0(z) = 300 g/L

Here, D [m2/h], k [g/g], kd [1/h], KS [g/g], Ki [g/L], Sin [g/L], v [m/s]
and �0 [1/h] are the dispersion coefficient, the yield coefficient, the
death rate, the biomass inhibition constant, the substrate inhibition
constant, the substrate inlet concentration, the fluid velocity and
the maximum specific growth rate, respectively. A simulated time
tsim of 2 h is adopted. The dispersion coefficient D is varied (D = 100,
10−2 and 10−4 m2/s), while the other parameter values are taken
from [27] (see also Table 2). (Also here the Peclet number can be
used to indicate the dispersion values.)

4.1.3. Oil well exploitation
The oil well exploitation (OWE) example is described by the
classic Buckley–Leverett equation [28] with capillary pressure:

∂S

∂t
= ∂

∂z

(
4	S(1 − S)

∂S

∂z

)
− ∂

∂z

(
S

S2 + (1 − S)2
S

)
(20)



eering Journal 155 (2009) 603–616 609

w

S

w
H
d
f
1

4

d
m
t
t
u
i
M
a
e
t
s
d
M
e
b
t
(
f
i

4

e
o
x

R

w

‖

A
u
i
r
M
D
l
s
v
p
O
(
t
(
D
(
I
s

F. Logist et al. / Chemical Engin

ith initial conditions:

(z, 0) =
{

1 − 3 · z if z ∈ [0, 1/3]
0 if z ∈ [1/3, 1]

(21)

here S indicates the water saturation and 	 the capillary constant.
ere, the velocity and diffusion terms are clearly dependent on the
ependent variable S. The simulated time tsim is 0.4 s. As before dif-
erent values for the diffusion parameter 	 are adopted (	 = 10−1,
0−2 and 10−3).

.2. Selected methods for comparison

Due to the implementation via m-functions a large number of
ifferent algorithms can be tested by changing the function’s argu-
ents. However, in view of brevity, quantitative results for only

he seven major algorithms are presented. SM1 and SM2 indicate
he original sequencing method as described by Renou et al. [7]
sing for the reaction part an explicit Euler scheme and the explicit

ntegrator ode45, respectively. MM1 and MM2 are based on the
atMOL toolbox with fixed finite differences on a uniform grid

nd solve the resulting DAE with ode15s. The former algorithm
mploys low-order discretisation schemes (corresponding to the
anks-in-series approximation), while the latter uses high-order
tencils. Advanced features as flux/slope limiters, static regrid-
ing, and (iii) dynamic regridding techniques are implemented in
M3, MM4, and MM5, respectively. Different uniform grids are

mployed (N = 50, 100 and 250) to enable an appropriate trade-off
etween accuracy and computation time. It should be mentioned
hat N concerns the number of points for a cell-centred spatial grid
used in the sequencing method), while N + 1 points are required
or a vertex-centred spatial grid (employed in the MatMOL toolbox)
n order to have spatial intervals of equal length.

.3. Measures and references

The comparison between the different methods is based on sev-
ral measures. To measure the accuracy, the relative deviation RE
f a solution profile x(z, t) is compared with a reference profile
ref(z, t) based on the function 1-norm:

E(x(z, t)) = ‖xref(z, t) − x(z, t)‖1

‖xref(z, t)‖1
(22)

ith as function 1-norm the L1 norm:

f (z, t)‖1 =
(∫ L

0

|f (z, t)| dz

)
. (23)

time averaged relative deviation (ARE) is computed over the sim-
lated period, employing the trapezium rule to approximate the

ntegral in the norm definition. For the biochemical and chemical
eactor cases, the reference transient solutions are obtained with
M2 on a 501 (N + 1) point grid for the high dispersion cases (i.e.,
= 1–10−1 and 10−2–10−3), and by SM2 on a 500 point grid for the

ow diffusion cases (i.e., D = 10−4–10−5). For the reference steady-
tate solutions for the jacketed tubular reactor the profiles obtained
ia a shooting method [22] are selected. For the oil well exam-
le the references are given by MM2 on a 501 (N + 1) point grid.
ther interesting points for comparison are (i) the problem size Np

i.e., the number of discretisation points times the number of equa-
ions), (ii) the number of integration steps taken by the integrator

Nsteps), (iii) the number of times the right hand side function of the
AEs/ODEs is evaluated (Nfevals), and (iv) the computation time

CPU), measured when using Matlab® 7.0 and a computer with an
ntel 1.86 GHz processor and 2 GB RAM, as well as (iv) the ratio of
imulated to computation time (R).
Fig. 2. Oil well exploitation: reference evolutions for water saturation for different
capillary values, i.e., 	 = 10−1 (top), 10−2 (middle), and 10−3 (bottom).

4.4. General results

Since the results for the FBBR are in general similar to ones for
the DFR, they are not discussed in detail in view of brevity. Nev-
ertheless, the corresponding m-files are also made available. Fig. 1
displays the reference solutions for the temperature and concen-
tration in the DFR. As can be seen, the fluid flows from the left
to the right and, as expected, the fronts become steeper, when
diffusion decreases. The steady-state profiles have been added at
the final time, and it is clear that convergence is safely achieved
after 20 s. Fig. 2 depicts the reference solution of the water satura-

tion for a time span of 0.4 s. Clearly, the water front sharpens and
moves to the right as time evolves. Also, the influence of 	 is sim-
ilar to that of D. Lower values lead to steeper fronts. Due to space
restrictions, Figs. 3 and 4 depict snapshots of the transient (spatial)
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ig. 3. Jacketed tubular reactor: snapshots of spatial profiles for temperature (left
= 10−1 (top), 10−3 (second row), and 10−5 (third row and bottom).
oncentration and temperature profiles based on 100 discretisa-
ion intervals for only the basic methods (SM2, MM1, MM2, MM3,

M4, and MM5) in order to qualitatively illustrate their general
eatures. Table 3 on the other hand provides a more quantitative
nd detailed description. With respect to the computation time,
concentration (right) for the different methods for different diffusion values, i.e.,
it has to be noted that in most of the cases for the DFR and FBBR
the computation time is much smaller than the simulated time,
while this is not true for the OWE example. Explanations are the
smaller time scales and the non-linear convection term involved in
the latter example.
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Fig. 4. Oil well exploitation: snapshots of spatial profiles for water saturation for
the different methods for different capillary values, i.e., 	 = 10−1 (top), 10−2 (second
row), and 10−3 (third row and bottom).
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4.5. MOL approaches

As a first remark, it should be noted that the MOL approaches
are able to yield accurate results for cases with constant velocity
and diffusion coefficients (e.g., DFR and FBBR) as well as for cases
in which they are function of the dependent variables (e.g., OWE).

4.5.1. Finite differences on fixed grids
With respect to the discretisation order, the following obser-

vations are made. For low diffusion values accurate profiles are
obtained for both the low-order scheme MM1 (i.e., the tanks-
in-series model) and the high-order scheme MM2. Although
for D = 10−1 m2/s and 	 = 10−1 a similar accuracy is observed,
the high-order solutions are generally more accurate than their
low-order equivalents. Nevertheless, for low diffusion values (e.g.,
D = 10−5 m2/s and 	 = 10−3) inaccuracies in the movement of
the sharp fronts appear: (i) excessive smearing due to numerical
diffusion for the low-order scheme and (ii) non-physical oscilla-
tions (in front of and/or behind the sharp front) due to numerical
dispersion for the high-order scheme. From a computational point
of view, it is noticed that in general the low-order scheme is
slightly faster than the high-order scheme. Increasing the number
of grid points decreases the undesired effects, but also leads to
higher computation times.

Concerning time balancing, Fig. 5 depicts the averaged transient
relative errors and the computation time versus the integration
tolerances for D = 10−3 m2/s and 	 = 10−2 with a grid of 251
points. Clearly, the averaged relative deviations remain more or
less constant up to a certain integration tolerance after which
a sharp increase is observed. This constant level is higher for
the low-order scheme (MM1) than for the high-order scheme
(MM2). Also the point of increase lies at higher tolerances for
MM1. The computation time increases as lower tolerances are
requested. Hence, an acceptable trade-off between computation
time and accuracy has to be found. For the cases under study
this trade-off is located around integration tolerance values of
10−4–10−3. Therefore, although the user is recommended to test
some different values when coding his own application, 10−3 can
often be regarded as an acceptable starting value.

For the introduction of the boundary conditions, the results
are briefly highlighted. The first approach (based on forcing the
deviations from the boundary conditions towards zero) turned
out to be cumbersome since a careful and time consuming tun-
ing procedure is required for each of the different time constants
�f . Too high time constants yield inaccurate transient profiles,
while too low values result in a stiff ODE system, which typ-
ically requires high computation times, when solved with the
non-stiff integrator ode45. The second approach, involving the elim-
ination of the algebraic equations, yields results which hardly
differ from the ones found when solving the original DAEs with
the integration routine ode15s. The computation time is, unfor-
tunately, only slightly lower. In summary, the effort to convert
the DAE into an equivalent ODE in order to solve it with an
explicit solver, is not worth the limited decrease in computation
time for the current cases.

4.5.2. Finite volumes with flux limiters
To mitigate non-physical oscillations, several flux limiting func-

tions can be exploited. In general, the oscillations (in front of and
behind the sharp front) are smoothed out. For instance, all nega-
tive concentrations are eliminated. The various limiting functions

behave rather similarly, only a minor influence in the amount
of smoothing is observed. The Superbee limiter, exhibiting the
sharpest front and the most oscillatory behaviour, smooths the
least, whereas the Minmod limiter, displaying the least oscillations
but also the smoothest front, obviously smooths the most. The com-
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Table 3
Detailed overview of test results for the jacketed tubular reactor (DFR), the fixed bed bioreactor (FBBR) and the oil well exploitation (OWE).

DFR Np Nsteps Nfeval CPU R ARE1 C ARE1 T

D Method 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250

1E−1 SM1 100 200 500 NA NA NA 100 200 500 0.04 0.10 0.69 0.002 0.005 0.035 2.83E−2 1.64E−2 8.17E−3 2.21E−3 1.24E−3 5.79E−4
SM2 100 200 500 100 200 500 700 1400 3500 0.26 0.57 2.30 0.013 0.029 0.115 2.74E−2 1.58E−2 7.78E−3 2.32E−3 1.31E−3 6.49E−4
MM1 102 202 502 79 85 92 124 122 135 0.13 0.34 3.61 0.007 0.017 0.181 1.13E−2 5.12E−3 2.04E−3 2.31E−3 1.01E−3 2.62E−4
MM2 102 202 502 77 83 92 126 131 141 0.13 0.36 3.55 0.007 0.018 0.178 1.67E−2 7.52E−3 1.98E−3 2.44E−3 1.09E−3 2.73E−4

1E−3 SM1 100 200 500 NA NA NA 100 200 500 0.04 0.07 0.40 0.002 0.004 0.020 2.54E−2 1.31E−2 5.33E−3 4.73E−3 2.46E−3 1.09E−3
SM2 100 200 500 100 200 500 700 1400 3500 0.26 0.55 2.07 0.013 0.028 0.104 3.39E−2 1.71E−2 6.90E−3 4.31E−3 2.26E−3 1.01E−3
MM1 102 202 502 109 132 154 170 201 219 0.16 0.49 4.78 0.008 0.025 0.239 5.11E−2 2.64E−2 1.08E−2 3.21E−3 1.67E−3 7.17E−4
MM2 102 202 502 127 144 159 191 213 228 0.19 0.57 4.92 0.010 0.029 0.246 1.64E−3 5.42E−4 1.14E−4 1.65E−3 7.24E−4 1.80E−4

1E−5 SM1 100 200 500 NA NA NA 100 200 500 0.03 0.07 0.31 0.002 0.004 0.016 1.97E−2 8.39E−3 3.23E−3 4.41E−3 2.00E−3 5.43E−4
SM2 100 200 500 100 200 500 700 1400 3500 0.24 0.53 1.97 0.012 0.027 0.099 3.26E−2 1.43E−2 3.52E−3 3.93E−3 1.75E−3 4.37E−4
MM1 102 202 502 121 158 224 186 228 302 0.17 0.57 6.25 0.009 0.029 0.313 7.25E−2 4.26E−2 2.12E−2 4.85E−3 3.04E−3 1.77E−3
MM2 102 202 502 223 335 573 345 416 685 0.32 1.20 16.47 0.016 0.060 0.824 2.09E−2 1.15E−2 5.10E−3 2.71E−3 1.54E−3 8.24E−4
MM3a 102 202 502 894 1759 NC 4731 10037 NC 29.41 124.71 NC 1.471 6.236 NC 3.46E−2 1.66E−2 NC 3.52E−3 1.87E−3 NC
MM3b 102 202 502 699 3230 NC 3190 20437 NC 20.33 251.50 NC 1.017 12.58 NC 3.15E−2 1.34E−2 NC 3.40E−3 1.71E−3 NC
MM3c 102 202 502 800 3955 NC 3871 23807 NC 25.50 309.23 NC 1.275 15.46 NC 3.36E−2 1.46E−2 NC 3.53E−3 1.79E−3 NC
MM3d 102 202 502 551 5631 NC 1545 33106 NC 11.36 431.59 NC 0.568 21.58 NC 2.94E−2 1.20E−2 NC 3.39E−3 1.70E−3 NC
MM3e 102 202 502 649 2633 NC 3373 16066 NC 20.67 190.75 NC 1.034 9.538 NC 3.08E−2 1.37E−2 NC 3.34E−3 1.71E−3 NC
MM3f 102 202 502 462 4014 NC 1658 25378 NC 9.79 309.03 NC 0.490 15.45 NC 2.94E−2 1.26E−2 NC 3.27E−3 1.66E−3 NC
MM4 102 202 502 760 890 980 10336 12104 13328 11.06 11.87 14.11 0.553 0.594 0.706 8.57E−3 5.27E−3 4.28E−3 5.45E−4 5.46E−4 4.38E−4
MM5 102 202 502 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

FBBR Np Nsteps Nfeval CPU R ARE1 C ARE1 T

D Method 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250

1E−0 SM1 100 200 500 NA NA NA 100 200 500 0.02 0.04 0.62 5.22E−6 1.22E−5 1.72E−4 1.04E−4 5.60E−5 2.42E−5 1.75E−2 9.28E−3 3.91E−3
SM2 100 200 500 100 200 500 700 1400 3500 0.24 0.53 2.07 6.67E−5 1.48E−4 5.74E−4 9.18E−5 4.85E−5 2.07E−5 1.78E−2 9.48E−3 3.99E−3
MM1 102 202 502 148 161 178 183 203 220 0.16 0.42 3.62 4.46E−5 1.15E−4 1.01E−3 7.42E−5 3.68E−5 1.47E−5 1.40E−2 6.97E−3 2.79E−3
MM2 102 202 502 149 164 181 187 204 231 0.17 0.42 3.56 4.76E−5 1.16E−4 9.90E−4 1.51E−7 2.14E−7 2.59E−7 7.84E−5 4.22E−5 3.09E−5

1E−2 SM1 100 200 500 NA NA NA 100 200 500 0.02 0.04 0.27 5.05E−6 1.08E−5 7.58E−5 7.78E−5 4.00E−5 1.64E−5 4.27E−3 2.28E−3 9.70E−4
SM2 100 200 500 100 200 500 700 1400 3500 0.24 0.54 1.74 6.67E−5 1.49E−4 4.82E−4 7.38E−5 3.80E−5 1.56E−5 4.26E−3 2.28E−3 9.69E−4
MM1 102 202 502 168 207 248 223 279 344 0.18 0.63 4.97 5.06E−5 1.76E−4 1.38E−3 2.09E−4 1.11E−4 4.67E−5 3.34E−2 1.81E−2 7.66E−3
MM2 102 202 502 226 242 264 333 293 317 0.25 0.61 4.74 7.06E−5 1.71E−4 1.32E−3 9.55E−7 2.05E−7 3.21E−8 5.23E−4 1.43E−4 2.04E−5

1E−4 SM1 100 200 500 NA NA NA 100 200 500 0.02 0.04 0.18 5.01E−6 1.08E−5 4.89E−5 6.39E−5 2.97E−5 8.00E−6 5.87E−3 2.45E−3 5.34E−4
SM2 100 200 500 100 200 500 700 1400 3500 0.24 0.53 1.64 6.68E−5 1.47E−4 4.55E−4 6.35E−5 2.95E−5 7.90E−6 5.89E−3 2.46E−3 5.38E−4
MM1 102 202 502 190 249 379 271 367 590 0.22 0.76 8.27 6.08E−5 2.11E−4 2.30E−3 3.95E−4 2.57E−4 1.41E−4 7.31E−2 4.96E−2 2.91E−2
MM2 102 202 502 423 680 1131 618 957 1254 0.58 2.09 22.95 1.61E−4 5.80E−4 6.37E−3 1.90E−5 2.70E−6 7.33E−6 2.47E−2 1.11E−2 2.47E−3
MM3a 102 202 502 497 737 1229 1147 1684 2855 4.30 13.07 84.86 1.20E−3 3.63E−3 2.36E−2 1.59E−4 8.64E−5 3.13E−5 3.79E−2 2.09E−2 8.73E−3
MM3b 102 202 502 1408 2688 5532 3115 5466 10934 12.21 53.96 528.74 3.39E−3 1.50E−2 1.47E−1 5.05E−5 1.86E−5 6.24E−6 2.69E−2 1.24E−2 3.49E−3
MM3c 102 202 502 1669 2671 4917 3268 5312 10507 13.59 53.63 499.95 3.77E−3 1.49E−2 1.39E−1 4.93E−5 1.85E−5 6.38E−6 2.80E−2 1.31E−2 3.90E−3
MM3d 102 202 502 1872 3475 7587 4274 7975 16045 17.91 82.21 902.66 4.98E−3 2.28E−2 2.51E−1 2.88E−5 1.93E−5 1.79E−5 2.08E−2 8.32E−3 2.20E−3
MM3e 102 202 502 596 960 1765 1154 1922 3479 4.34 15.25 96.16 1.21E−3 4.24E−3 2.67E−2 9.21E−5 4.19E−5 8.00E−6 2.97E−2 1.47E−2 4.93E−3
MM3f 102 202 502 1538 2906 6786 3351 6504 13310 12.92 61.61 718.00 3.59E−3 1.71E−2 1.99E−1 6.18E−5 2.43E−5 4.19E−6 2.72E−2 1.29E−2 4.06E−3
MM4 102 202 502 2750 3290 4370 36852 44126 58718 24.21 25.74 35.58 6.72E−3 7.15E−3 9.88E−3 3.41E−6 4.95E−6 7.00E−6 2.28E−3 1.31E−3 1.06E−3
MM5 102 202 502 3445 2993 5900 23870 21524 42053 206.77 293.65 1741.95 5.74E−2 8.16E−2 4.84E−1 1.11E−4 4.67E−5 1.24E−5 1.46E−2 7.22E−3 2.98E−3
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putation time increases compared to the original finite difference
schemes, i.e., from a factor 3 for the OWE up to 1 or 2 orders of
magnitude for the DFR. This increase is due to the fact that the lin-
ear first-order differentiation matrix is now replaced by non-linear
functions, and, hence, Matlab®’s matrix-vector oriented imple-
mentation can no longer be fully exploited. This causes the DFR
simulation for the dense grid of N = 250 not to converge within the
given time. Therefore, supplying the sparsity pattern is extremely
important to keep even for the coarse grids the computation times
bounded. It should be noted that differences in computation time
exist between the different flux limiters. The Van Leer limiter is in
general one of the faster flux limiters.

4.5.3. Adaptive grids
As an alternative for flux limiting functions, both static and

dynamic adaptive grids can be employed. Clearly, only the static
regridding code is able to produce an accurate profile in a limited
amount of time for the DFR. Nevertheless, the dynamic regridding
code has been successfully applied to the OWE (and also the FBBR)
case. The accuracy for both methods is approximately one order of
magnitude higher than the one for the flux limiting functions. With
respect to the computation time the conclusions are less straight-
forward. For the DFR, the static regridding is much faster than the
flux limiters, whereas the inverse is to true for the OWE. It should
be noted that the computation time hardly depends on the initial
grid size, since this code removes unnecessary grid points during
the computation and moves them to places with sharp fronts. On
the other hand, the computation time for the dynamic regridding
code increases with increasing grid points, resulting only for the
N = 50 in a faster computation than the static regridding.

4.6. OS approaches

Although OS approaches can in general be adapted to also
treat cases with non-constant velocities and diffusion coefficient,
this modification is not possible in a straightforward way for the
sequencing method. Therefore, only the results for the DFR case
can be discussed.

4.6.1. Sequencing method
For the original sequencing method (SM2), a rather accu-

rate approximation of the reference profile is obtained for the
entire range of diffusion values. For high values the disconti-
nuity is excellently captured, but for low values, the gradients
at the inlet are underestimated. This deviation decreases as the
number of grid points is increased, as can be seen from the
decreasing relative errors. Typically, these methods exhibit higher
errors then the MatMOL based methods for high diffusion val-
ues, while they outperform the latter techniques for low diffusion
values.

Clearly, the fastest algorithm is obtained when an explicit Euler
scheme (SM1) is employed, indicating the non-stiffness of the reac-
tion part. The use of an explicit integrator (ode45) still yields
fast results. However, when more than one reaction is present
and their characteristic times are different, implicit integrators
will be more appropriate. Not all conditions for commutativity
are fulfilled, as reaction and diffusion do not commute. How-
ever, changing the order from ‘convection–reaction–diffusion’ to
‘convection–diffusion–reaction’, leads in all cases to the same
solution. Nevertheless, for lower discretisation grids in the
‘convection–diffusion–reaction’ sequence, a minor jump is visible

across the switching position, because in this case the discretised
reaction part exhibits a discontinuity due to the switching from the
maximum to the minimum value in the jacket temperature, which
the diffusion part cannot smooth as it has already been applied in
the current time step.



614 F. Logist et al. / Chemical Engineering Journal 155 (2009) 603–616

F oleran
	

4

n
a
n
r
A
m
t
o
a

4

a
t

a
c
t
v
v
t
g
s
a
t
r
i
B
a
t
b
O
a
a

(
m
d
s

ig. 5. Time averaged relative errors, and computation time versus the integration t
= 10−3 (right).

.6.2. Sequencing method: adaptation
Removal of the inaccuracies at the inlet by adopting

on-uniform grids has been found to be non-trivial. Several
ttempts to employ a higher number of discretisation points
ear the inlet have lead to unsatisfactory results. Linearising the
eaction part leads to significantly higher computation times.
pplying the higher-order scheme for diffusion does not yield
ore accurate profiles with respect to the reference profiles. Fur-

hermore, it should be mentioned that a low-order approximation
f the boundary conditions is required in order to obtain a stable
lgorithm.

.7. Guidelines

First of all, it should be mentioned that there is no single best
pproach for all convection–reaction–diffusion processes, since
his choice depends on the nature of the underlying PDEs.

However, an often acceptable strategy is to first try a MOL
pproach with finite differences on a fixed grid. The MatMOL toolbox
ontains a collection of linear finite difference spatial discretisa-
ion schemes which can deal with both constant and non-constant
elocities and diffusion coefficients. This spatial discretisation con-
erts the PDEs to semi-discrete DAEs. For the time integration
he Matlab® time integrators can be employed. Implicit inte-
rators (e.g., ode15s) can directly deal with the resulting DAE
ystems, while explicit integration routines (e.g., ode45) can be
pplied after converting the DAEs into ODEs. With respect to the
ime integrator choice, the implicit integration routine ode15s,
equires no reformulation as it can directly solve the DAEs and
s often faster than when the explicit routine ode45 is used.
ecause of the high degree of similarity in the program code,
user can not only easily switch between different discretisa-

ions (low-order/high-order, uniform/non-uniform, etc.) but also
uild new simulation programs without a large recoding effort.
ften the only parameter to be tuned is the integration toler-
nce in order to achieve a balanced discretisation in both space
nd time.
For highly diffusive processes, the MatMOL toolbox routines
especially, the high-order schemes) outperform the sequencing

ethod both in computation time and accuracy. For convection
ominated processes, however, inaccuracies appear: low-order
chemes (e.g., the classic tanks-in-series approximation) intro-
ce: jacketed tubular reactor with D = 10−3 m2/s (left) and oil well exploitation with

duce smoothing of steep gradients due to numerical diffusion,
while high-order schemes induce non-physical oscillations due to
numerical dispersion. Hence, steep moving fronts are not easily
captured. More advanced discretisation techniques such as MOL
approaches based on finite volumes discretisations with flux lim-
iters and a daptive gridding may then resolve this problem at the
expense of a higher computational cost. Hereto, the MatMOL tool-
box contains a variety of TVD flux limiting functions and both a
static and dynamic regridding scheme.

On the other hand, when the velocity and the diffusion are
constants, the easily implemented sequencing method provides a
valuable alternative for convection dominated cases. This method
exhibits a superior performance at low diffusion values since it
captures the steep moving fronts excellently, but tends to underes-
timate the inlet gradient at high diffusion values. The computation
time is modest and is hardly influenced by the diffusion val-
ues. Therefore, this method can be regarded as an excellent and
flexible tool for simple models over a wide range of diffusion val-
ues whenever ease of implementation and outstanding transient
performance in the presence of sharp changes are required. No
parameters have to be tuned, only the sequence in which the
subproblems are solved may require some attention. To enhance
the computation time linearisation of the reaction part can be an
option. However, introducing high-order schemes for the diffu-
sion matrix generally does not improve the solution. Adapting the
method to more complex situations, e.g., (i) when the convection
and/or diffusion depend on the dependent variables, (ii) when dif-
ferent fluid velocities are involved (e.g., in a reactor with counter
current cooling) or (iii) when non-uniform grids are required, is,
however, tedious or even impossible.

5. Industrial example

This section illustrates how the techniques that have been tested
and compared in the previous section, can successfully be exploited
in an industrially relevant case, i.e., the optimisation of a jacketed
reverse flow reactor (see also [29]). Due to the periodic switching

of the flow direction in this fixed bed tubular reactor, slowly mov-
ing temperature fronts are induced which finally become repetitive
in a cyclic steady-state regime. The reactor under study can accu-
rately be described by a pseudo-homogeneous model leading to
the following set coupled non-linear parabolic partial differential
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quations:

∂C

∂t
= D

∂2C

∂z2
− v

∂C

∂z
− kCe−E/RT (24)

cp
∂T

∂t
= 
ax,eff

∂2T

∂z2
− �gcpgvε

∂T

∂z
− �HεkCe−E/RT − 4h

d
(T − Tw)

(25)

nd boundary conditions:

(0, t) = Cin and T(0, t) = Tin for 2(i − 1)� ≤ t < 2i� (26)

(L, t) = Cin and T(L, t) = Tin for 2i + 1� ≤ t < 2(i + 1)� (27)

here C [kmol/m3] is the reactant concentration, Cin [kmol/m3]
he incoming reactant concentration, T [K] the temperature, Tin
he temperature of the incoming gas, � [s] the switching time, i an
nteger, D [m2/s] the dispersion coefficient, v [m/s] the gas velocity
positive for forward flow and negative for backward flow), k [1/s]
he rate constant, E/R [K] the activation temperature, �cp [kJ/m3K]
he fixed bed heat capacity, 
ax,eff [kW/mK] the effective axial heat
onductivity, �gcpg [kJ/m3K] the heat capacity of the gas, ε the
oid fraction, −�H [kJ/kmol] the heat of reaction, L [m] the reactor
ength, Tw [K] the temperature of the jacket fluid, d [m] the reac-

or diameter and h [kW/m2K] the (global) heat transfer coefficient.
he value of this heat transfer coefficient is constant and positive
n the jacketed zone, i.e., [L/2 − Lj/2, L/2 + Lj/2] with Lj [m] the
acket length, and zero in the insulated zones, i.e., [0, L/2 − Lj/2]
nd [L/2 + Lj/2, L].
flow reactor: during the cyclic steady-state state (forward flow) (top) and during

The goal is to determine the optimal cyclic steady-state, which
involves a trade-off between conversion and energy costs:

J = (1 − A)

∫ 2�

0
Coutlet(t) dt

2�

+ A

K

∫ 2�

0

∫ L

0
(4h/(�gcpgTinletLd))(Tw − T(z, t)) dz dt

2�

where the trade-off value A and the scaling factor K are taken equal
to 0.5 and 104 m3/kmol, respectively. The conversion cost mea-
sures the time averaged unconverted reactant concentration, while
the energy cost accounts for the net heat which can be recuper-
ated from the reactor via the jacket. The degrees of freedom are
the jacket temperature Tw ( ∈ [200, 900] K), the switching period
� ( ∈ [100, 500] s) and the jacket length Lj ( ∈ [0.4, 1] m), while an
upper limit of 900 K is imposed on the temperature inside the reac-
tor for constructive reasons.

This problem has been successfully solved in Matlab® by cou-
pling the MatMOL toolbox to Matlab®’s optimisation routine
fmincon. For simulation, the MatMOL toolbox is employed within
a direct dynamic simulation approach, i.e., simulating the reac-
tor start-up for 80 cycles. This number has been found to be high
enough to guarantee (based on measures presented in [30]) that
a (cyclic) steady-state is reached. Other approaches to compute
the cyclic steady-state are, e.g., global discretisation and (multiple)
shooting (see, e.g., [31]). Although these techniques are in gen-

eral more efficient, the size of the problem increases significantly
inducing the need for tailored structure exploiting (optimisation)
algorithms. However, direct dynamic simulation always yields the
entire transient start-up behaviour, which is important for the plant
operators.
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In the current case a fourth-order discretisation scheme (Eqs.
9) and (10)) is adopted for both the convection and the diffusion
erms on a uniform grid of 51 discretisation points. The bound-
ry conditions are implemented using a forcing function with a
ime constant �f equal to 0.001. The resulting DAE is integrated
s such using ode15s with relative and absolute integration tol-
rances of 10−3 and 10−6, respectively. To enhance the numerical
omputation of the resulting DAE system, the sparsity pattern of
he Jacobian has been supplied. Each time the entire 80 cycles are
omputed without restarting the Matlab® integrators at the differ-
nt flow reversals. However, due the switching between the right
and sides for forward and backward flow at these flow reversal

nstants, an increased number of integration steps are needed just
efore and just after the flow reversals.

After optimisation, a minimum cost J∗ = 6.6392 · 10−6 kmol/m3

s found for the optimal values L∗
j

= 0.7 m, T∗
w = 843.5 K, and

∗ = 100 s. Hence, only the middle part is jacketed in order to
xtract heat, while the outer parts are still insulated. The interme-
iate value of the jacket temperature is employed to control and
o limit the maximum reactor temperature. The short switching
ime induces steep temperature profiles and avoids the reactor to
xtinguish.

The two top plots in Fig. 6 display the first half cycle of the opti-
al cyclic steady-state, i.e., forward flow. During this period the

nitial profiles, i.e., at the end of the backward flow period (indicated
y �), move to the right and finally coincide with their symmetric
ounterparts (indicated by�) at the switching moment. The dashed
ines represent the transient evolution during the first second with
n interval of 0.1 s while the solid lines cover the entire half cycle
ith an interval of 10 s. From this figure, it is clear that the con-

entration front moves much faster than the temperature front.
owever, the employed discretisation scheme is able to handle

hem both.
The two lower plots in Fig. 6 depict the start-up of an initially

mpty reactor. The reactor is first preheated during 1500 s by using
feed stream of 873 K. Afterwards the temperature drops to 293 K
nd the flow reversals start. The reactor profiles are depicted with
n interval of 100 s, i.e., the optimal switching time. As clearly can
e observed, the reactor profiles gradually evolve towards the cyclic
teady-state indicated by� and �, without violating the upper limit
f 900 K. Hence, it can be concluded that it is possible to start-up the
eactor in such a way that it safely converges towards the previously
ptimised cyclic steady-state.

. Conclusions

This paper has discussed and compared Matlab® imple-
entations of two classes of simulation methods for

onvection–reaction–diffusion processes: (i) method of lines
MOL) approaches and (ii) operator splitting (OS) methods. These
wo classes have been selected based on their (relatively) easy
mplementation. Several typical advantages, disadvantages and
ossible pitfalls (e.g., steep moving fronts) have been demon-
trated over a large range of convection–reaction–diffusion
rocesses using a jacketed tubular reactor, a fixed bed bioreactor
nd an oil well exploitation example. Based on these results prac-
ical guidelines have been provided. Moreover, since all codes for

he test examples have been made available (www.matmol.org),
ractitioners can easily compare different approaches when coding
heir own process simulator. Finally, the successful combination
ith optimisation routines, has been illustrated by optimising an

ndustrially relevant reverse flow reactor case.
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